ADDITIONS TO THE LICHEN BIOTA OF ALTAI MOUNTAINS (SIBERIA). III

Summary. Based on field trips between 1995–2007, rare and noteworthy lichens from the Altai Mountains in southern Siberia are described. Of the 20 species reported here, *Mycoblastus alpinus* is new for the West Siberia, 4 species – *Catinaria atropurpurea*, *Lecanora subcarpinea*, *Ochrolechia arborea*, *Physcia alnophila* and *Rhizoplaca subdiscrepans* are new for Altai Mts., *Umbilicaria lyngei* is new for Tyva Republic, and *Caloplaca chrysophthalma*, *Heterodermia japonica*, *Ochrolechia androgyna*, *O. turneri* and *Pilophorus cereolus* are new for Altai (West Altai). The presence in Altai Mts. of *Lecanora symmicta*, *Ochrolechia pallescens*, *Pertusaria alpina*, *P. amara*, *P. sommerfeltii* and *Placynthiella icmalea* was confirmed using TLC. The secondary chemistry seems to be very useful to distinguish *Umbilicaria decussata* and *U. lyngei* in Altai. Whereas gyrophoric and lecanoric were revealed for *U. decussata* by TLC, specimens of *U. lyngei* represent two chemotypes: without lichen substances and containing norstictic acid.

Key words: new records, lichen, Russia, Siberia, Altai Republic, *Ochrolechia*, *Pertusaria*, *Umbilicaria decussata*, *U. lyngei*.

This paper continues the series of publications started by E.A. Davydov (2004) and Davydov & al. (2007, 2012) on the lichen flora of the Altai Mts. Only the Russian part of this area is considered in this paper. Our main focus was on groups that require secondary metabolite chemistry for identification. Some of them were previously reported from the Altai Mts. by Sedelnikova (1990) and Davydov (2001), but were identified only based on morphology and results of spots tests.

MATERIAL & METHODS

Morphological and anatomical characters were analyzed by applying standard light microscopical methods. Secondary metabolites were identified with standard thin-layer chromatography techniques (Culberson & Kristinsson, 1970). Abbreviated collection data of examined specimens are provided for every species. Altitudes are indicated in meters above the sea level. Names of collectors were reduced to ED and CP respectively. Voucher specimens are deposited in the herbaria ALTB and FR.
RESULTS AND DISCUSSION

Caloplaca chrysophthalma Degel. [TLC: emodin, parietin, fragilgin]

The investigated specimen was sterile. This sorediate circumboreal species has a scattered distribution in Europe, Asia and North America (Kondratyuk et al., 2004). In Asia it is already known from Taiwan (Aptroot & Sparrius, 2003), Russia (see Urbanavichus, 2010), North China (Wetmore, 2004) and Mongolia (Hauk & Javkhlan, 2006). It was recorded for Altai by Kondratyuk et al. (2004) and is reported as new for the West Altai (Altaiisky krai) here. The single specimen was collected on bark of _Populus tremula_ in _Abies sibirica_ – Betula pendula forest – tall forb forest.

Specimens examined: _Altaiisky krai_. Zmeinogorsky district, western part of Tigireksky range, 51°06’49’’ N, 83°01’01’’ E, alt. 1000 m, 12.VII.2006, ED 6716 (ALTB).

Catinnaria atropurpurea (Schaer.) Vězda & Poelt

A widespread circumboreal species (Kotlov, 2003) reported here as new for the Altai Mts. where it was collected on _Salix_ shrub in swamp in humid wood pasture with _Larix sibirica, Pinus sibirica, Picea obovata_ and a lot of dead wood.

Altai Republic. Ust’-Kansky district, W of Mt. Chugunka and S of river Tarkhata, 50°43’49.7’’ N, 85°24’15.8’’ E, alt. 1680 m, 1.VII.2003, CP 8766 (FR).

Lecanora subcarpinea Szatala [TLC: atranorin, psoromic a.]

The species is widespread in Europe (Lumbsch et al., 1997; Aptroot et al., 2005) and the Caucasus (Novruzov, 1990; Binkova et al., 2003) and has recently been recorded for South Siberia from the Sayan Mts. (Sedelnikova, 2001). New for the Altai Mts. where it was collected along creeks on bark of _Salix_ sp. in forest of _Picea obovata_, _Betula_ and _Salix_ along creek, and on trunk of _Picea obovata_ in _P. obovata_ forest. It seems more widely distributed in Siberia than previously assumed.

Specimens examined: _Altaiisky krai_. Soloneshensky district, Bashchelaksky range, along the river Shinok between the villages _Tog-Altau_ and _Cherny Anuy_, 51°21’43.6’’ N, 83°35’20.4’’ E, alt. 910 m, 26.VI.2000, CP 8515, 8519, 8523, 8536, 8542 (FR), along the river Shinok between the communi-
yties of Bugryshikha and Andreevsky, 51°11’19.3’’ N, 82°49’30.6’’ E, alt. 450 m, 25.VI.2003, CP 8297 (FR); same range, valley of the Malaya Amelikha River near the confluence with Zargornaya Amelikha River, 51°04’40.4’’ N, 82°49’57.9’’ E, alt. 850 m, 26.VI.2003, CP 8361 (FR); Soloneshensky district, Bashchelaksky range, along the river Shinok between the villages _Tog-Altau_ and _Cherny Anuy_, 51°21’43.6’’ N, 83°35’20.4’’ E, alt. 910 m, 28.VI.2003, CP 8515 (FR); same locality, CP 8519, 8523, 8536, 8542 (FR), along the river Shinok between the villages _Tog-Altau_ and _Cherny Anuy_, 51°21’42.5’’ N, 84°34’53.1’’ E, 870 m, 28.VI.2003, CP 8556, 8630 (FR). _Altai Republic_. Ust’-Koksinsky district, Katunsky range, SW bank of Tal’menie Lake, left bank of Khariuzovka River, 49°49’ N, 85°48’ E, alt. 1516-1800 m, 14.VII.2000, ED 6802 (FR).

Heterodermia japonica (M. Satô) Swinscow & Krog [TLC: atranorin, zeorin]

All investigated specimens belong to chemotype I according to Kurokawa (1962) and Trass (2000). The species was previously reported from the Altai by Trass (2000). It is reported here as new for the West Altai (Altaiisky krai).

Specimens examined: _Altaiisky krai_. Soloneshensky district, Bashchelaksky range, along the river Shinok between the villages _Tog-Altau_ and _Cherny Anuy_, 51°21’43.6’’ N, 83°35’20.4’’ E, alt. 910 m, forest of _Picea obovata_, _Betula_ and _Salix_ along creek, on bark of _Salix_ sp. 28.VI.2003, CP 8602 (FR).

A common circumboreal and temperate species known from a wide range of substrata. The _L. symmicta_ complex includes several related and morphologically variable species that differ by their anatomy and chemistry, e.g. _L. filamentosa_ (Stirt.) Elix & Palice and _L. schizochromatica_ Pérez.-Ortega, T. Sprib. & Printzen, which are morphologically very similar but does not seem to be very closely related (Palice et al. 2011, Pérez-Otrega et al., 2010; Printzen & May, 2002). All investigated specimens from the Altai Mts., however, belong to _Lecanora symmicta_ s. str. Common within the area on bark of _Abies sibirica, Sorbus sibirica, Populus tremula, Pinus sibirica, Picea obovata_, _Betula pendula_, _Salix caprea_ and other trees in the forest belt, e.g. tall forb _Abies sibirica_ forest, forest of _Picea obovata_, _Betula_ and _Salix_ along creek and taiga forest (_Abies sibirica, Larix sibirica, Pinus sibirica_).

Specimens examined: _Altaiisky krai_. Zmeinogorsky district, Tigireksky range, valley of Bolshaya Uskuchevka River between the communities of Bugryshikha and Andreevsky, 51°11’19.3’’ N, 82°49’30.6’’ E, alt. 450 m, 25.VI.2003, CP 8334 (FR); same range, valley of Bolshaya Uskuchevka River between Bugryshikha and Andreevsky, 51°11’19.3’’ N, 82°48’30.6’’ E, alt. 450 m, 25.VI.2003, CP 8334 (FR); same range, ca. 4 km S of Andreevsky, valley of the Malaya Amelikha River near the confluence with Zargornaya Amelikha River, 51°04’40.4’’ N, 82°49’57.9’’ E, alt. 850 m, 26.VI.2003, CP 8361 (FR); Soloneshensky district, Bashchelaksky range, along the river Shinok between the villages _Tog-Altau_ and _Cherny Anuy_, 51°21’43.6’’ N, 83°35’20.4’’ E, alt. 910 m, 28.VI.2003, CP 8515 (FR); same locality, CP 8519, 8523, 8536, 8542 (FR), along the river Shinok between the villages _Tog-Altau_ and _Cherny Anuy_, 51°21’42.5’’ N, 84°34’53.1’’ E, 870 m, 28.VI.2003, CP 8556, 8630 (FR). _Altai Republic_. Ust’-Koksinsky district, Katunsky range, SW bank of Tal’menie Lake, left bank of Khariuzovka River, 49°49’ N, 85°48’ E, alt. 1516-1800 m, 14.VII.2000, ED 6802 (FR).
8517 (FR); **Altai Republic.** Ust'-Koksinsky district, Katunsky range, at the junction of the Khazinikha and Ioldo Rivers, 49°53' N, 86°04' E, alt. 1800 m, *Abies sibirica – Pinus sibirica – Picea obovata* forest, on bark of *Sorbus sibirica,* 22.VII.2000, ED 6767 (ALTB); Ongudaysky district, at 10 km E of Ust'-Kan at left bank of Yabagan River, 50°56' N, 84°54' E, alt. 1057 m, marginal part of the bog, on bark of *Salix* sp. 30.VI.2003, ED 6768 (ALTB); some km N of the Seminsky pass along the road between the villages Topuchaja and Sarlyk, 51°05'39.7'' N, 85°38'17.1'' E, alt. 1270 m, open forest of *Picea obovata,* *Pinus sibirica,* *Larix sibirica* and *Betula,* on bark of *Salix* sp. 2.VII.2003, CP 8857 (FR).

Mycoblastus alpinus (Fr.) Th. Fr. ex Hellb. [TLC: planaic, usnic & isousnic a., atranorin]

A circumboreal species reported from Europe, Asia (Biazrov et al., 1989) and North America (Tønsberg, 1993). In Russia it was reported from the European part, the Ural Mts., Siberia and the Far East (Urbanavichus, 2010). New for West Siberia and the Altai.

Specimens examined: Altai Republic. Ust'-Kansk district, W of Mt. Chugunka and S of river Tarkhata, 50°43'49.7'' N, 85°24'15.8'' E, alt. 1680 m, humid wood pasture with *Larix sibirica,* *Pinus sibirica,* *Picea obovata* and a lot of dead wood, on wood, 1.VII.2003, CP 8785 (FR).

Ochrolechia androgya (Hoffm.) Arnold

A morphologically and chemically variable species widespread in Russia (Urbanavichus, 2010) including the Altai Mts. (Sedelnikova, 1990). Tønsberg (1992) distinguishes several chemotypes, of which the following two were found by us. The records confirm the presence of this species in the Altai and extend the known occurrence to the West Altai (Altai krai).

Chemotype A [TLC: lecanoric & gyrophoric a.]

Specimens examined: Altai Republic. Ust'-Kansk district, W of Mt. Chugunka and S of river Tarkhata, wood pasture with *Larix sibirica,* trunk of giant *Larix sibirica,* 50°43'55.4'' N, 85°24'21.9'' E, alt. 1680 m, 2.VII.2003, CP 8819 (FR); [TLC: thallus: variolaric & lecanoric a.; apothecia: variolaric, lecanoric, gyrophoric & hiascic(?) a.]; same locality, on trunk of giant *Larix sibirica,* CP 8820 (FR) [TLC: variolaric a.].

Ochrolechia arborea (Kreyer) Almb. [TLC: gyrophoric a., lichexanthone (+ lecanoric or hiascic a.)]

This circumboreal species of *Ochrolechia* is characterized by the content of lichexanthone and is known in Russia from the European part, the Ural Mts., Siberia and the Far East (Urbanavichus, 2010). It was also reported from Mongolia (Golubkova, 1981). New for Altai Mts. where it is quite common in the forest belt on bark of *Abies sibirica* and *Picea obovata,* more rarely on *Sorbus sibirica* and *Betula pendula.*

Specimens examined: ** **Altai krai. Zmeinogorsky district, Tigireksky range, right bank of the Belaya River, 7 km upstream of the mouth of the Berlozhia river, 50°57'34'' N, 83°02'59'' E, alt. 717 m, 7.VII.2006, ED 6736 (ALTB); some range, c. 4 km S of Andreevsky, valley of the Malaya Amelikha River near the confluence with Zagornaya Amelikha River, 51°04'40.4'' N, 82°49'57.9'' E, alt. 850 m, 26.VI.2003, CP (8364); same range, near the headwaters of Batalikha River, 51°03.0’ N, 82°53.1’ E, alt. 1525 m, 10.VIII.2003, ED 6737 (ALTB); Solonchensky district, Bashchelaksky range, along the river Shinok between the villages Tog-Altaï and Cherny Anuy, 51°21'42.5'' N, 83°34'53.1'' E, alt. 870 m, 28.VI.2003, CP 8552 (FR); Altai Republic, Ust'-Kansky district, between the villages Tog-Altaï and Cherny Anuy, 51°21'24.0” N, 83°34'06.0” E, alt. 670 m, forest of *Picea obovata* along creek, 29.VI.2003, CP 8616, 8635 (FR); same locality, CP 8618 (FR); same locality, CP 8601, 8604, 8609, 8611 (FR); Ust'-Koksinsky district, Katunsky range, at the junction of the Khazinikha and Ioldo Rivers, 49°53’ N, 86°04’ E, alt. 1800 m, 22.VII.2000, ED 6735, 6756 (ALTB).

Ochrolechia pallescens (L.) A. Massal. [TLC: variolaric a. in thallus, variolaric, gyrophoric & lecanoric a. in apothecia]

Most reports of this species are from Europe (including the European part of Russia), the Ural Mts., South Siberia and the Far East, but it has also been reported from Israel and India (Kukwa, 2009). According to Kukwa (ibid.) its occurrence in South America is dubious. The records confirm the presence of this species in the Altai (Sedelnikova, 1990), where it was found on bark of *Salix* and *Populus tremula in Abies sibirica – Populus tremula* mountain relict forest.

Specimens examined: ** **Altai krai. Zmeinogorsky district, Kolyvansky range, left
bank of Belaya River at 1.5 km NW of Stanovaya Mt. (796 m), 51°00’ N, 82°44’ E, alt. 600 m, 12.VI.1999, ED 1732 (ALTB); western part of the Tigireksky range at 5 km S of the community of Andreevsky, near the mid section of the Zagornaya Amelikha River, 51°03.37’ N, 82°51.12’ E, alt. 986 m, 26.VI.2003, ED 5537 (ALTB); same range, left bank of Glukharikha River 0.5 km up of junction with Belaya River, 51°00.1’ N, 82°45.7’ E, alt. 560 m, 12.VIII.2003, ED 5576 (ALTB).

Ochrolechia turneri (Sw.) Hasselrot [TLC: variolaric a.]
Common and widespread in the Northern Hemisphere. In Russia reported from the European North, the Caucasus, South Siberia and South Primorye (Urbanavichus, 2010). The records confirm the presence of this species in the Altai (Sedelnikova, 1990) and extend its known range to the West Altai (Altaiskiy krai). The specimens were collected on wood or bark of *Abies sibirica* and *Pinus sibirica* in *Pinus sibirica* – *Abies sibirica* forest, and humid wood pasture with *Larix sibirica*, *Pinus sibirica* and *Picea obovata*.

Specimens examined: Altaiskiy krai. Zmeinogorsky district, Tigireksky range, near the headwaters of the Bol’shoi Tigirek River, right bank of Babyi Kluch spring, 51°03.05’ N, 82°58.37’ E, alt. 1490 m, 9.X.2005, ED 6746 (ALTB); **Altai Republic.** Ust’-Kansky district, W of Mt. Chugunka and S of river Tarkhata, 50°43’49.7” N, 85°24’15.8” E, alt. 1680 m, 1.VII.2003, CP 8741, 8786 (FR); Ust’-Kokinsky district, Katunsky range, S bank of Tal’menie Lake, left bank of Ozyornaia River, slope with NW exposition, 49°48’ N, 85°49’ E, alt. 1516–1700 m, 15.VII.2000, ED 6745 (ALTB).

Pertusaria albenscens (Huds.) M. Choisy et Werner [TLC: no substances or undetermined fatty acid]
This species is also widespread and common in Russia (Urbanavichus, 2010). The records confirm its presence in the Altai Mts. (Davydov, 2001; Sedelnikova, 1990). Reports of *P. hemisphaerica* (Flörke) Eriksen from Siberia lacking TLC data probably belong to this species.

Specimens examined: Altaiskiy krai. Charyshsky district, Korgonsky range, right bank of Gorelyi Korgon River 9 km upstream from its mouth. N slopes, 51°01’ N, 83°45’ E, alt. 1400 m, *Pinus sibirica* – *Abies sibirica* forest, on bark of *Sorbus sibirica*, 29.VII.1998, ED 5981 (ALTB); Zmeinogorsky district, Tigireksky range, left bank of Belaya River opposite the mouth of the Irtukta River, 50°57’20” N, 82°58’27” E, alt. 700–800 m, *Abies sibirica* dominated mountain taiga relict forest (Chern’), on *Sorbus sibirica*, 14.VII.2005, ED 6732 (ALTB); **Altai Republic.** Ust’-Kansky district, between the villages Tog-Altai and Cherny Anuy, 51°21’24.0” N, 83°34’06.0” E, alt. 670 m, forest of *Picea obovata* along creek, on *Picea obovata*, 29.VI.2003, CP 8599, 8612 (FR).

Pertusaria alpina Hepp [TLC: stictic & constictic a.]
The species is common in wet forests within the area on smooth bark of *Abies sibirica* and *Sorbus sibirica*. The records confirm its presence in the Altai (Davydov, 2001; Sedelnikova, 1990). It was collected on bark of *Padus avium*, as well as on twigs of *Caragana arborescens* and *Spiraea sp.*

Specimens examined: Altaiskiy krai. Zmeinogorsky district, Kolyvansky range, left bank of Belaya River at 1.5 km NW of Stanovaya Mt. (796 m), 51°00’ N, 82°44’ E, alt. 600 m, 12.VI.1999, ED 1746 (ALTB); Tigireksky range, basin of Belaya River, N slope of Mokhnato-Gradkaya Mt. (1077 m), 50°56’ N, 82°43’ E, alt. 800–900 m, 9.VI.1999, ED 6765 (ALTB); same range, valley of Bolshaya Uskuchevka River between communities of Bugryshikha and Andreevsky, 51°11.2’ N, 82°48.3’ E, alt. 560 m, 25.VI.2003, ED 6784 (ALTB); same locality, 51°11’19.3” N, 82°48’30.6” E, alt. 450 m, 25.VI.2003, CP 8305 (FR); same range, at 5 km S of the community of Andreevsky, near the mid section of the Zagornaya Amelikha River, 51°03.37’ N, 82°51.12’ E, alt. 986 m, 26.VI.2003, ED 6782 (ALTB); same range, left bank of Belaya River uper of junction with Glukharikha River, 51°00.3’ N, 82°45.8’ E, alt. 540 m, 7.VII.2003, ED 6763, 6783 (ALTB); same range, left bank of Belaya River 2 km upstream of junction with Glukharikha River, 50°59.7’ N, 82°47.8’ E, alt. 550 m, 7.VII.2003, ED 5540 (ALTB); same range, left bank of Glukharikha River 0.5 km up of junction with Belaya River, 51°00.1’ N, 82°45.7’ E, alt. 560 m, 12.VIII.2003, ED 5542 (ALTB); same range, right bank of the Belaya River 7 km upstream of the mouth of the Berlozhia river, 50°57’34” N, 83°02’59” E, alt. 717 m, 7.VII.2006, ED 6762 (ALTB); same locality, 7.VII.2006, ED 6764 (ALTB).

Pertusaria amara (Ach.) Nyl. [TLC: picro-lichenic a.]
The species is widespread in Russia (Urbanavichus, 2010) and rather common in the Altai Mts. (Davydov, 2001; Sedelnikova, 1990), however, its identification without TLC data may be ambiguous. The records confirm the presence of *P. amara* in the Altai.
Specimens examined: **Altaiisky krai**. Charyshsky district, Korgonsky range, right bank of Kumir River near its lower section, 50°59′ N, 84°18′ E, alt. 800 m, taiga forest (Abies sibirica, Picea obovata, Betula pendula, Sorbus sibirica), on bark of Abies sibirica, 2.VIII.1995, ED 540 (ALTB); Zmeinogorsky district, Tigirecksky range, right bank of the Belaya River, 7 km upstream of the mouth of the Berlozhia river, 50°57′34″ N, 83°02′59″ E, alt. 717 m, Abies sibirica – tall forb forest, on Betula pendula, 7.VII.2006, ED 6733 (ALTB); same locality, on Abies sibirica ED 6734 (ALTB).

Pertusaria sommerfelli Florke [TLC: stictic & constictic a., lichexanthone in apothecia]

A circumboreal species reported from many regions in Russia (Urbanavichus, 2010). The records confirm its presence in the Altai (Davydov, 2001; Sedelnikova, 1990), where it is relatively rare and was collected by us in Abies sibirica – tall forb forest, on wood, on bark of Lonicera altaica in humid wood pasture with Larix sibirica, Pinus sibirica, Picea obovata and a lot of dead wood, and on bark of Sorbus sibirica in Pinus sibirica – Picea obovata forest.

**Specimens examined: **Altaiisky krai. Zmeinogorsky district, Tigirecksky range, right bank of the Belaya River, 7 km upstream of the mouth of the Berlozhia river, 50°57′34″ N, 83°02′59″ E, alt. 717 m, 7.VII.2006, ED 6761 (ALTB); Altai Republic, Ust’-Kansky district, W of Mt. Chuunka and S of river Tarkhata, 50°43′49.7″ N, 85°24′15.8″ E, alt. 1680 m, 1.VII.2003, CP 8800 (FR); Ust’-Kokinsky district, Katunsky range, S coast of Tal’menie Lake, left bank of Ozymaia River, slope with NW exposition, 49°48′ N, 85°49′ E, alt. 1516–1700 m, 15.VII.2000, ED 6760 (ALTB).

Physcia alnophila (Vain.) Loht., Moberg, Myllys & Tehler

This taxon was recently elevated to species level using molecular phylogenetic data (Lohtander et al., 2009). Its distribution is not clear because it was previously treated as a variety of *P. aipolia* (Ehrh. ex Humb.) Führm. Common within the Altai Mts. on bark of Salix growing along rivers. New for the Altai Mts.

**Specimens examined: **Altaiisky krai. Zmeinogorsky district, Tigirecksky range, valley of Bolskhaya Uskuchevka River between the communities of Bugryshkia and Andreevsky, 51°11′19.3″ N, 82°48′30.6″ E, alt. 450 m, tall forb community along forest road with Abies sibirica, Betula pendula and Salix caprea, on Spiraea, 25.VI.2003, CP; Soloneshensky district, Bashchelaksky range, along the river Shinok between the villages Tog-Altai and Cherny Anuy, 51°21′43.6″ N, 83°35′20.4″ E, alt. 910 m, forest of Picea obovata, Betula and Salix along creek, on bark of Salix sp. 28.VI.2003, CP 8516 (FR).

Plophilus cereolus (Ach.) Th. Fr. [TLC: atranorin]

An arctic-alpine species reported from Europe, the European and Asian parts of Russia, North America, Greenland and Svalbard (Dombrovskaya, 1996; Skirina, Skirin, 2011). Rare in the Altai Mts. (Sedelnikova, 1990) and new for the Western Altai (Altaiisky krai).

**Specimens examined: **Altaiisky krai. Soloneshensky district, Bashchelaksky range, valley of Shinok River, downstream of the waterfall, 51°21′27″ N, 84°34′06″ E, alt. 1035 m, mixed forest (Picea obovata, Abies sibirica, Betula pendula, Salix spp., Sorbus sibirica, Populus tremula, Pinus sibirica), on rock at the base of a talus slope, 29.VI.2003, ED 6755 (ALTB).

Placynthiella icmalea (Ach.) Coppins & P. James [TLC: gyroiphoric a.]

A common subcosmopolitan species that is widespread in Russia (Makarova, 2003).

**Specimens examined: **Altaiisky krai. Zmeinogorsky district, Tigirecksky range, 4–5 km S of the community Andreevsky, ca. 51°04′ N, 82°51′ E, on rotten stump of Betula, 26.VI.2003, CP 8384 (FR).

Rhizoplaca subdiscrepans (Nyl.) R. Sant.

The distribution of this species in Russia requires additional investigations. The species was so far reported from a few localities in the European North, the southern Ural Mts, South and East Siberia (Urbanavichus, 2010). New for the Altai Mts. where it is rather common.

**Specimens examined: **Altaiisky krai. Zmeinogorsky district, Tigirecksky range, near the headwaters of the Belaya River, 51°01′16″ N, 83°04′10″ E, alt. 1488 m, timberline, rocks, on stones, 5.VII.2006, ED 6766 (ALTB).

Umbilicaria decussata (Vill.) Zahlbr. [TLC: gyroiphoric and lecanoric acid]

The species is found at high altitudes and latitudes worldwide. In many cases it is tardily distinguished from *U. lyngei* Schol. in sterile condition. The study of Lofall & Timdal (2005) in Norway and Svalbard showed that secondary chemistry may help to distinguish these two species. According to their study based on fertile material, *U. decussata* contains gyroiphoric acid, sometimes also norstictic acid, whereas *U. lyngei* lacks lichen substances or
sometimes contains norstictic acid. Because *U. decussata* only very rarely produces apothecia, and *U. lyngei* was never found fertile in the Altai, we used nrITS DNA sequences to verify identifications of our specimens. Based on these results we confirmed the occurrence of gyrophoric and lecanoric acids in *U. decussata* by TLC. and detected two chemotypes of *U. lyngei*: one without lichen substances and one containing norstictic acid. Thus, secondary chemistry seems to be very useful to distinguish the two species in the Altai.

Specimens examined: *Altaysky krai.* Zmeinogorsky district, Tigireksky range, left bank of the Belaya River, the Chornaya Mt. (elev. 2013 m), rocks on the watershed, on rocks, 51°00'17'' N, 83°07'15'' E, alt. 1838 m, 11.VII.2006, DE 7100 (ALTB); *Altai Republic.* Ust'-Koksinsky district, Katunsky range, upper reaches of the Ak-Kem River, right bank, stone fields and rocks, on rocks, 49°59'15.6'' N, 86°35'09.3'' E, alt. 2686 m, 9.VIII.2009, ED 7108 (ALTB).

Umbilicaria lyngei Schol.

Umbilicaria lyngei is more common than *U. decussata* in the Altai and widely distributed in the alpine zone from the timberline to the summits near the snow line as well as in high mountain steppes. It is reported here as a new for Tyva Republic. The species grow on rock outcrops or on boulders.

Specimens examined: Chemotype A [TLC: norstictic a.]: *Altai Republic.* Ust'-Koksinsky district, Katunsky range, upper reaches of the Ak-Kem River, right bank, stone fields and rocks, on rocks, 49°59’08.3’’ N, 86°34’55.5’’ E, alt. 2687 m, 09.VIII.2009, ED 7107 (ALTB); same locality, 49°59'15.6'' N, 86°35'09.3'' E, alt. 2686 m, 19.VIII.2009 ED 7101 (ALTB).

Emblicaria lyngei Schol.

Chemotype B [TLC: no subst.]: *Altai Republic.* Kosh-Agachsky district, Juzhno-Chuisky range, Tara River basin near unnamed mountain elev. 3521 m, 49°42’N, 88°14’E, alt. 2200–2500 m, 24.VII.1999, ED 5466 (ALTB); same district, Ukok tableland, left bank of Ak-Alakha River at 1 km downstream from its junction with Kalguty River, 49°23’N, 87°38’E, alt. 2200 m, 23.VII.1998, ED 5556 (ALTB); *Tyva Republic.* Mugur-Aksynsky district, left bank of Mogen-Buren River near it’s junction with Bashky-Kara-Sug stream. 50°10’N, 89°46’E, alt. 1800–2100 m, 4.VII.1995, ED 242 (ALTB).

Acknowledgements

The authors are grateful to A. I. Shmakov (Barnaul) for organizing an expedition in the Altai Mts., I.A. Artiomov (Novosibirsk) and G.E. Insarov (Moscow) for organizing and participating in Central Altai expeditions (2000, 2008, and 2009). We also thank the directors and staff of Katunsky state nature reserve, Belukha Nature Park (Russia) for their great support during an expedition. The study was supported by the Russian Ministry of Science and Education (project SC No 16.518.11.7071) and the Russian Foundation for Basic Research (RFBR grant No 11-04-00901). The work of E. D. in LE was financially supported by RFBR (grant No. 10-04-90702 & 11-04-90704), and work in F. R. by the Deutsche Forschungsgemeinschaft (DFG grant No. 436 RUS 17/36/05).

REFERENCES

